Los mejores cursos GRATIS © AulaFacil.com
  • [Entrada Profesores]
  • Certificaciones
  • [Mi AulaFácil]
viernes, 17 agosto 2018 español
Síguenos
Publica tu curso
¿Cómo Funciona AulaFácil?

Teorema de Bayes

El Teorema de Bayes viene a seguir el proceso inverso al que hemos visto en el Teorema de la probabilidad total:

 

Teorema de la probabilidad total: a partir de las probabilidades del suceso A (probabilidad de que llueva o de que haga buen tiempo) deducimos la probabilidad del suceso B (que ocurra un accidente).

 

Teorema de Bayes: a partir de que ha ocurrido el suceso B (ha ocurrido un accidente) deducimos las probabilidades del suceso A (¿estaba lloviendo o hacía buen tiempo?).

 

La fórmula del Teorema de Bayes es:

 

Estadistica

 

Tratar de explicar estar fórmula con palabras es un galimatías, así que vamos a intentar explicarla con un ejemplo. De todos modos, antes de entrar en el ejercicio, recordar que este teorema también exige que el suceso A forme un sistema completo.

 

Ejercicio 1º: El parte meteorológico ha anunciado tres posibilidades para el fin de semana:

 

a) Que llueva: probabilidad del 50%.

b) Que nieve: probabilidad del 30%

c) Que haya niebla: probabilidad del 20%.

 

Según estos posibles estados meteorológicos, la posibilidad de que ocurra un accidente es la siguiente:

 

a) Si llueve: probabilidad de accidente del 10%.

b) Si nieva: probabilidad de accidente del 20%

c) Si hay niebla: probabilidad de accidente del 5%.

 

Resulta que efectivamente ocurre un accidente y como no estábamos en la ciudad no sabemos que tiempo hizo (nevó, llovío o hubo niebla). El teorema de Bayes nos permite calcular estas probabilidades:

Las probabilidades que manejamos antes de conocer que ha ocurrido un accidente se denominan "probabilidades a priori" (lluvia con el 60%, nieve con el 30% y niebla con el 10%).

Una vez que incorporamos la información de que ha ocurrido un accidente, las probabilidades del suceso A cambian: son probabilidades condicionadas P (A/B), que se denominan "probabilidades a posteriori".

Vamos a aplicar la fórmula:

Estadistica

 

a) Probabilidad de que estuviera lloviendo:

 

Estadistica

 

La probabilidad de que efectivamente estuviera lloviendo el día del accidente (probabilidad a posteriori) es del 71,4%.

 

b) Probabilidad de que estuviera nevando:

 

Estadistica

 

La probabilidad de que estuviera nevando es del 21,4%.

 

c) Probabilidad de que hubiera niebla:

 

Estadistica

 

La probabilidad de que hubiera niebla es del 7,1%.

Gracias por compartir y gracias por enlazar la página
Compartir en Facebook
Acepto vuestra política de privacidad
Consentimiento Expreso para el tratamiento de datos de carácter personal recabados por vía electrónica (leer consentimiento)

¡Suscríbete GRATIS a nuestro boletín diario!:

Búsqueda personalizada
Existen nuevos mensajes en las siguientes salas de chat:

      Recibe gratis alertas en tu navegador, sin configuraciones ni registros. Más info...
      [No me interesa] | [Me Interesa]



      ¿Dudas? ¿Preguntas? Plantéalas en el foro
      Suscríbete Gratis al Boletín

      Escribir la dirección de Email:

      Acepto vuestra política de privacidad
      Consentimiento Expreso para el tratamiento de datos de carácter personal recabados por vía electrónica (leer consentimiento)

      Delivered by FeedBurner

      Destacamos
      Cargando datos...
      Buenos Artículos Diarios

      Sigue a AulaFácil en:

      Ránking Mundial Certificados
      Banner AulaFácil

      Este es un producto de AulaFacil S.L. - © Copyright 2009
      B 82812322 Apartado de Correos 176. Las Rozas 28230. Madrid (ESPAÑA)