7ª CLASE
Descuento comercial.

8ª CLASE
Descuento comercial:Ejercicios.

9ª CLASE
Descuento racional.

10ª CLASE
Descuento racional:Ejercicios.





Clase 6: Capitalización compuesta: Ejercicios.

  • Ejercicio 1: Calcular el interés de un capital de 5.000.000 ptas. invertidos durante un año y medio al 16%, aplicando capitalización simple y capitalización compuesta.
  • Ejercicio 2: Hallar el equivalente del 16% anual en base: a) mensual; b) cuatrimestral; c) semestral. Aplicando la formula de capitalización compuesta.
  • Ejercicio 3: Se recibe un capital de 1 millón de ptas. dentro de 6 meses y otro capital de 0,5 millones ptas. dentro de 9 meses. Ambos se invierten al 12% anual. ¿ Que importa se tendrá dentro de 1 año, aplicando capitalización compuesta ?.
  • Ejercicio 4: ¿ Qué intereses serían mayor, los de un capital de 600.000 invertidos durante 6 meses al 15% anual, aplicando capitalización simple, o los de un capital de 500.000 ptas. invertidos durante 8 meses al tipo del 16% en capitalización compuesta ?
  • Ejercicio 5: ¿ Si un capital de 1 millón de pesetas genera unos intereses durante 6 meses de 150.000 ptas, qué tipo de interés se estaría aplicando si se estuviera aplicando la capitalización simple ?, ¿y la capitalización compuesta ?. 

SOLUCIONES

    Ejercicio 1:

a) Aplicando la formula de capitalización simple: I = Co * i * t
Luego, I = 5.000.000 * 0,16 * 1,5
Luego, I = 1.200.000 ptas.
b) Aplicando la formula de capitalización compuesta: I = Co * (((1 + i) ^ t) - 1)
Luego, I = 5.000.000 * (((1 + 0,16) ^ 1,5) - 1)
Luego, I = 5.000.000 * (1,249 - 1)
Luego, I = 1.245.000 ptas.

    Ejercicio 2:

Vamos a calcular los tipos equivalentes al 16% anual:
a) En base mensual: 1 + i = (1 + i12) ^ 12 (" i" es la tasa anual)
Luego, 1 + 0,16 = (1 + i12) ^ 12 
Luego, (1,16) ^ 1/12 = 1 + i12 
Luego, 1,0124 = 1 + i12 
Luego, i12 = 0,0124 
b) En base cuatrimestral: 1 + i = (1 + i3) ^ 3 (" i" es la tasa anual)
Luego, 1 + 0,16 = (1 + i3) ^ 3 
Luego, (1,16) ^ 1/3 = 1 + i
Luego, 1,0507 = 1 + i
Luego, i3 = 0,0507 
c) En base semestral: 1 + i = (1 + i2) ^ 2 (" i" es la tasa anual)
Luego, 1 + 0,16 = (1 + i2) ^ 2 
Luego, (1,16) ^ 1/2 = 1 + i
Luego, 1,0770 = 1 + i
Luego, i2 = 0,0770 

    Ejercicio 3:

Tenemos que calcular el capital final de ambos importes dentro de 1 año y sumarlos
1er importe: Cf = Co + I  
Calculamos los intereses I = Co * (((1 + i) ^ t) - 1)
Luego, I = 1.000.000 * (((1+0,12) ^ 0,5) - 1) (tipo y plazo en base anual)
Luego, I = 58.301 ptas.
Luego, Cf = 1.000.000 + 58.301 = 1.058.301 ptas.
2do importe: Cf = Co + I  
Calculamos los intereses I = Co * (((1 + i) ^ t) - 1)
Luego, I = 500.000 * (((1+0,12) ^ 0,25) - 1) ( tipo y plazo en base anual)
Luego, I = 14.369 ptas.
Luego, Cf = 500.000 + 14.369 = 514.369 ptas.
Ya podemos sumar los dos importe que tendremos dentro de 1 año
Luego, Ct = 1.058.301 + 514.369 = 1.572.670 ptas.

    Ejercicio 4:

a) En el 1º caso, aplicamos la fórmula de capitalización simple: I = Co * i * t
Luego, I = 600.000 * 0,15 * 0,5 (tipo y plazo en base anual)
Luego, I = 45..000 ptas.
b) En el 2º caso, aplicamos capitalización compuesta: I = Co * (((1 + i) ^ t) - 1)
Luego, I = 500.000 * (((1 + 0,16) ^ 0,66) - 1) ( tipo y plazo en base anual)
Luego, I = 500.000 * (1,249 - 1)
Luego, I = 51.458 ptas.
Luego en la 2ª opción los intereses son mayores.

    Ejercicio 5:

a) Aplicando la formula de capitalización simple: I = Co * i * t
Luego, 150.000 = 1.000.000 * i * 0,5 (tipo y plazo en base anual)
Luego, i = 150.000 / 500.000
Luego, i = 0,3
Por lo tanto, se está aplicando un tipo de interés anual del 30%
b) Aplicando la formula de capitalización compuesta: I = Co * (((1 + i) ^ t) - 1)
Luego, 150.000 = 1.000.000 * (((1 + i) ^ 0,5) - 1)
Luego, 150.000 = 1.000.000 * ((1 + i) ^ 0,5) - 1.000.000
Luego, 1.150.000 = 1.000.000 * (((1 + i) ^ 0,5)
Luego, 1.150.000 / 1.000.000 = (1 + i) ^ 0,5
Luego, 1,15 = (1 + i) ^ 0,5
Luego, (1,15) ^ 2 = 1 + i
Luego, 1,322 = 1 + i
Luego,  i = 0,322
Por lo tanto, se está aplicando un tipo de interés anual del 32,2%

 


Página atrás

Página siguiente
         
         


Haz AulaFácil tu página de inicio             Envía esta página a un amigo

Envíanos un comentario       Página de Inicio       Contáctanos       ¿Quiénes somos?
Este es un producto de AulaFacil S.L. - © Copyright 2000