9ª CLASE
Coeficiente de curtosis

10ª CLASE
Distribuciones bidimesionales

11ª CLASE
Distribuciones marginales

12ª CLASE
Coeficiente de correlación lineal




 
LECCION 8ª
Medidas de forma: Coeficiente de Asimetría



b) Asimetría

Hemos comentado que el concepto de asimetría se refiere a si la curva que forman los valores de la serie presenta la misma forma a izquierda y derecha de un valor central (media aritemética)

Para medir el nivel de asimetría se utiliza el llamado Coeficiente de Asimetría de Fisher, que viene definido:

Los resultados pueden ser los siguientes:

g1 = 0 (distribución simétrica; existe la misma concentración de valores a la derecha y a la izquierda de la media)

g1 > 0 (distribución asimétrica positiva; existe mayor concentración de valores a la derecha de la media que a su izquierda)

g1 < 0 (distribución asimétrica negativa; existe mayor concentración de valores a la izquierda de la media que a su derecha)

Ejemplo: Vamos a calcular el Coefiente de Asimetría de Fisher de la serie de datos referidos a la estatura de un grupo de alumnos (lección 2ª):

Variable
Frecuencias absolutas
Frecuencias relativas
(Valor)
Simple
Acumulada
Simple
Acumulada
x x x x x
1,20

1

1
3,3%
3,3%
1,21
4
5
13,3%
16,6%
1,22
4
9
13,3%
30,0%
1,23
2
11
6,6%
36,6%
1,24
1
12
3,3%
40,0%
1,25
2
14
6,6%
46,6%
1,26
3
17
10,0%
56,6%
1,27
3
20
10,0%
66,6%
1,28
4
24
13,3%
80,0%
1,29
3
27
10,0%
90,0%
1,30
3
30
10,0%
100,0%

Recordemos que la media de esta muestra es 1,253

S((xi - x)^3)*ni S((xi - x)^2)*ni
x x
0,000110
0,030467

 

Luego:

 

(1/30) * 0,000110

 

g1 =

-------------------------------------------------

= -0,1586
 

(1/30) * (0,030467)^(3/2)

 

Por lo tanto el Coeficiente de Fisher de Simetría de esta muestra es -0,1586, lo que quiere decir que presenta una distribución asimétrica negativa (se concentran más valores a la izquierda de la media que a su derecha).

 


Clase anterior

Proxima clase


Haz AulaFácil tu página de inicio             Envía esta página a un amigo

Envíanos un comentario       Página de Inicio       Contáctanos       ¿Quiénes somos?
Este es un producto de AulaFacil S.L. - © Copyright 2000