28ª CLASE
Distribuciones discretas: Binomial

29ª CLASE
Distribuciones discretas: Poisson

30ª CLASE
Distribuciones discretas: Hipergeométrica

31ª CLASE
Distribuciones discretas: Multinomial










LECCION 27ª
Distribuciones discretas: Bernouilli

 

Distribuciones discretas y continuas

Las distribuciones discretas son aquellas en las que la variable puede pude tomar un número determinado de valores:

Ejemplo: si se lanza una moneda al aire puede salir cara o cruz; si se tira un dado puede salir un número de 1 al 6; en una ruleta el número puede tomar un valor del 1 al 32.

Las distribuciones continuas son aquellas que presentan un número infinito de posibles soluciones:

Ejemplo: El peso medio de los alumnos de una clase puede tomar infinitos valores dentro de cierto intervalo (42,37 kg, 42,3764 kg, 42, 376541kg, etc); la esperanza media de vida de una población (72,5 años, 7,513 años, 72, 51234 años).

Vamos a comenzar por estudiar las principales distribuciones discretas.

Distribuciones discretas: Bernouilli

Es aquel modelo que sigue un experimento que se realiza una sola vez y que puede tener dos soluciones: acierto o fracaso:

Cuando es acierto la variable toma el valor 1

Cuando es fracaso la variable toma el valor 0

Ejemplo: Probabilidad de salir cara al lanzar una moneda al aire (sale cara o no sale); probabilidad de ser admitido en una universidad (o te admiten o no te admiten); probabilidad de acertar una quiniela (o aciertas o no aciertas)

Al haber únicamente dos soluciones se trata de sucesos complementarios:

A la probabilidad de éxito se le denomina "p"

A la probabilidad de fracaso se le denomina "q"

Verificándose que:

p + q = 1

Veamos los ejemplos anteriores :

Ejemplo 1: Probabilidad de salir cara al lanzar una moneda al aire:

Probabilidad de que salga cara: p = 0,5

Probabilidad de que no salga cara: q = 0,5

p + q = 0,5 + 0,5 = 1

Ejemplo 2: Probabilidad de ser admitido en la universidad:

Probabilidad de ser admitido: p = 0,25

Probabilidad de no ser admitido: q = 0,75

p + q = 0,25 + 0,75 = 1

Ejemplo 3: Probabilidad de acertar una quiniela:

Probabilidad de acertar: p = 0,00001

Probabilidad de no acertar: q = 0,99999

p + q = 0,00001 + 0,99999 = 1

 


Clase anterior

Proxima clase


Haz AulaFácil tu página de inicio             Envía esta página a un amigo

Envíanos un comentario       Página de Inicio       Contáctanos       ¿Quiénes somos?
Este es un producto de AulaFacil S.L. - © Copyright 2000