AulaFacil.com: CLICK AQUÍ para aprender cientos de cursos gratis
Curso GRATIS de Estadistica. Aulafacil.com Estadstica Descriptiva
      


 



8ª CLASE
Grado de asimetría

9ª CLASE
Coeficiente de curtosis

10ª CLASE
Distribuciones bidimesionales

11ª CLASE
Distribuciones marginales



 
LECCION 7ª
Medidas de forma: Grado de concentración


Las medidas de forma permiten conocer que forma tiene la curva que representa la serie de datos de la muestra. En concreto, podemos estudiar las siguientes características de la curva:

a) Concentración: mide si los valores de la variable están más o menos uniformemente repartidos a lo largo de la muestra.

b) Asimetría: mide si la curva tiene una forma simétrica, es decir, si respecto al centro de la misma (centro de simetría) los segmentos de curva que quedan a derecha e izquierda son similares.

c) Curtosis: mide si los valores de la distribución están más o menos concentrados alrededor de los valores medios de la muestra.

a) Concentración

Para medir el nivel de concentración de una distribucón de frecuencia se pueden utilizar distintos indicadores, entre ellos el Indice de Gini.

Este índice se calcula aplicando la siguiente fórmula:

IG =

S (pi - qi)

----------------------------

S pi

(i toma valores entre 1 y n-1)

En donde pi mide el pocentaje de individuos de la muestra que presentan un valor igual o inferior al de xi.

pi =

n1 + n2 + n3 + ... + ni

----------------------------

x 100

n

Mientras que qi se calcula aplicando la siguiente fórmula:

qi =

(X1*n1) + (X2*n2) + ... + (Xi*ni)

-----------------------------------------------------

x 100

(X1*n1) + (X2*n2) + ... + (Xn*nn)

El Indice Gini (IG) puede tomar valores entre 0 y 1:

IG = 0 : concentración mínima. La muestra está unifomemente repartida a lo largo de todo su rango.

IG = 1 : concentración máxima. Un sólo valor de la muestra acumula el 100% de los resultados.

Ejemplo: vamos a calcular el Indice Gini de una serie de datos con los sueldos de los empleados de una empresa (millones pesetas).

Sueldos
Empleados (Frecuencias absolutas)
Frecuencias relativas
(Millones)
Simple
Acumulada
Simple
Acumulada
x x x x x
3,5

10

10
25,0%
25,0%
4,5
12
22
30,0%
55,0%
6,0
8
30
20,0%
75,0%
8,0
5
35
12,5%
87,5%
10,0
3
38
7,5%
95,0%
15,0
1
39
2,5%
97,5%
20,0
1
40
2,5%
100,0%

Calculamos los valores que necesitamos para aplicar la fórmula del Indice de Gini:

Xi
ni
S ni
pi
Xi * ni
S Xi * ni
qi
pi - qi
x x x x x x x x
3,5

10

10
25,0

35,0

35,0
13,6
10,83
4,5
12
22
55,0

54,0

89,0
34,6
18,97
6,0
8
30
75,0
48,0
147,0
57,2
19,53
8,0
5
35
87,5
40,0
187,0
72,8
15,84
10,0
3
38
95,0
30,0
217,0
84,4
11,19
15,0
1
39
97,5
15,0
232,0
90,3
7,62
25,0
1
40
100,0
25,0
257,0
100,0
0
x x x x x x x x
S pi (entre 1 y n-1) =
435,0
x
S (pi - qi) (entre 1 y n-1 ) =
83,99

 

Por lo tanto:

IG = 83,99 / 435,0 = 0,19

Un Indice Gini de 0,19 indica que la muestra está bastante uniformemente repartida, es decir, su nivel de concentración no es excesivamente alto.

Ejemplo: Ahora vamos a analizar nuevamente la muestra anterior, pero considerando que hay más personal de la empresa que cobra el sueldo máximo, lo que conlleva mayor concentración de renta en unas pocas personas.

Sueldos
Empleados (Frecuencias absolutas)
Frecuencias relativas
(Millones)
Simple
Acumulada
Simple
Acumulada
x x x x x
3,5

10

10
25,0%
25,0%
4,5
10
20
25,0%
50,0%
6,0
8
28
20,0%
70,0%
8,0
5
33
12,5%
82,5%
10,0
3
36
7,5%
90,0%
15,0
0
36
0,0%
90,0%
20,0
4
40
10,0%
100,0%

En este caso obtendríamos los siguientes datos:

Xi
ni
S ni
pi
Xi * ni
S Xi * ni
qi
pi - qi
x x x x x x x x
3,5

10

10
25,0

35

35
11,7
13,26
4,5
10
20
50,0

45

80
26,8
23,15
6,0
8
28
70,0
48
128
43,0
27,05
8,0
5
33
82,5
40
168
56,4
26,12
10,0
3
36
90,0
30
198
66,4
23,56
15,0
0
36
90,0
0
198
66,4
23,56
25,0
4
40
100,0
100
298
100,0
0,00
x x x x x x x x
S pi (entre 1 y n-1) =
407,5
x
S (pi - qi) (entre 1 y n-1 ) =
136,69

El Indice Gini sería:

IG = 136,69 / 407,5 = 0,34

El Indice Gini se ha elevado considerablemente, reflejando la mayor concentración de rentas que hemos comentado.

 


Clase anterior

Proxima clase


Pgina de Inicio       Contctanos       Quines somos?
Este es un producto de AulaFacil S.L. - Madrid, 13 de Julio 2000
AulaFacil.com: CLICK AQUÍ para aprender cientos de cursos gratis